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Low-gravity sloshing in a convex axisymmetrical container subjected to lateral excitation is
formulated by a variational principle and is solved analytically by a modal analysis method.
The use of spherical coordinates enables us: (i) to determine analytically the system of
characteristic functions for an arbitrary convex container, for which time-consuming and
expensive numerical methods have been used in the past; (ii) to express the liquid surface and its
dynamical displacement in the form of a single-valued function even when the liquid surface
curves strongly, due to surface tension; and (iii) to satisfy the compatibility condition for the
liquid surface displacement at the container wall. The variational principle is transformed into
a frequency equation in the form of a standard eigenvalue problem by the Galerkin method, in
which admissible functions for the velocity potential and the liquid surface displacement are
determined analytically in terms of the Gauss hypergeometric series. Since this process is
analytical and the dimension of the eigenvalue problem for obtaining a sufficiently converged
solution is very low, little computation time and cost are involved. Numerical results show that:
(a) the influences of the Bond number on the eigenfrequency are different for high and low
liquid-filling levels; (b) neglecting the surface tension underestimates the magnitude of the
surface oscillation; and (c) the liquid depth yielding the maximum slosh force and moment
increases with decreasing Bond number. ( 1998 Academic Press Limited
1. INTRODUCTION

ASSOCIATED WITH THE DYNAMICS AND CONTROL ANALYSIS of a space vehicle, propellant sloshing,
i.e. the oscillatory motion of a liquid propellant in a moving container, is a subject of great
importance (Abramson 1966). Sloshing has an unfavourable influence on vehicle stability
and may disturb the flight trajectory or cause high stresses on the structural-supporting
systems of the vehicle. Especially for large vehicles, the propellant contributes a non-
negligible portion to the total mass of the vehicle, so that the importance of sloshing is
accentuated, and it is essential to examine and understand the slosh dynamics in the
low-gravity space environment.

In the low-gravity sloshing problem, the surface tension of the liquid plays an overwhelm-
ing role in comparison to the gravitational force as the restoring force governing the
oscillatory motion of the liquid surface. Due to the surface tension effect, the liquid surface
can be curved strongly even in the undisturbed static case. This static liquid surface is called
the meniscus. The strongly curved meniscus makes the problem geometrically more com-
plicated than the sloshing problem under normal gravity, especially for an arbitrary
axisymmetrical container with curved walls and top. As a preliminary step to the dynamical
0889—9746/98/010057#27 $25.00/fl970125 ( 1998 Academic Press Limited
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slosh analysis, we must therefore determine the geometry of the meniscus by solving
a nonlinear differential equation iteratively (Utsumi 1989).

Studies on low-gravity sloshing have been conducted for a cylindrical container (Satterlee
& Reynolds 1964; Dodge & Garza 1967; Tong 1967; Bauer & Siekmann 1971; Peterson
et al. 1989) and for an arbitrary axisymmetrical container (Yeh 1967; Concus et al. 1969;
Chu 1970; Dodge & Garza 1970; Dodge et al. 1991; Hung & Lee 1992). For an arbitrary
axisymmetrical container, these previous studies did not develop any analytical expressions
for the characteristic functions constituting the modal functions of the velocity potential
and the liquid surface displacement. Numerical procedures were applied instead, and the
computation time and cost increased dramatically when the computational mesh was
refined. Therefore, in order to solve this problem and further enhance the study on sloshing,
this paper develops a new analytical method for determining the characteristic functions for
an arbitrary axisymmetrical container.

In previous studies (Utsumi 1988, 1989), an analytical method was presented for deter-
mining the characteristic functions by using spherical coordinates whose origin is at the top
of the cone that is tangent to the container at the contact line of the meniscus with the
container wall. This analytical method requires little computation time and cost and,
furthermore, has the following merits over numerical methods: (i) the mathematical formu-
lation allows the liquid surface and its dynamical displacement to be expressed as a single-
valued function, even when the liquid surface curves strongly due to the surface tension in
a low-gravity space environment; (ii) the kinematic compatibility condition for the liquid
surface displacement can be satisfied at the container wall by considering only one
component of the liquid surface displacement vector. The method is thus a geometrically
convenient solution of the low-gravity sloshing problem for an arbitrary axisymmetrical
convex container.

In the previous papers (Utsumi 1988, 1989), the meniscus shape and the eigenfrequency
were determined for a prescribed liquid-filling level. The purpose of the present paper is to
deal with a more advanced and practically important problem, i.e. predicting the responses
of surface slosh motion and slosh force and moment to lateral excitation of the container.
Furthermore, additional discussion is presented on numerical results for the eigenfrequency.

2. FORMULATION OF THE PROBLEM

2.1. COMPUTATIONAL MODEL

The geometry is defined as in Figure 1, where an ellipsoidal container is drawn as typical
example for an axisymmetrical container. The container is subjected to the lateral acceler-
ation f ® (t) in the x-direction. The low-g sloshing is characterized by the strongly curved
meniscus M, which is a plane surface in normal gravity. It is assumed that the liquid motion
is inviscid, incompressible and irrotational, and the container is rigid.

In this paper, the meniscus shape R
M

(h) is considered to be known, since it has been
calculated in a previous study (Utsumi 1989). Moreover, the oscillatory displacement of the
liquid surface f from its equilibrium position M is assumed to be small within the
framework of linear theory.

2.2. SPHERICAL COORDINATE SYSTEM

As shown in Figure 1, a spherical coordinate system (R, h, u) is introduced and the liquid
surface displacement f is considered in the R-direction. The origin O is chosen as the apex of



Figure 1. Axisymmetrical container and coordinate systems (z
c
denotes the z-coordinate of the contact line of

the meniscus M with the container wall ¼ ),
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the cone whose side wall is tangent to the container wall at the contact line of the meniscus
with the container wall. By using the spherical coordinate system, the meniscus M, the
disturbed liquid surface F, and the container wall ¼ can be expressed as

M: R"R
M

(h), (1)

F: R"R
F
(h,u, t)"R

M
(h)#f (h,u, t), (2)

¼: R"R
W

(h) . (3)

Using the spherical coordinate system has the following three merits.

(i) The functions R
M

, R
F
and f can be expressed as single-valued functions with respect to

h and u. This is convenient for the mathematical formulation. If one uses cylindrical
coordinates [e.g. Yeh (1967)], the z-coordinates of the meniscus and liquid surface elevation
are two-valued functions with respect to r and u for high liquid-filling levels (see Case 1 in
Figure 1) due to the very small contact angle between the liquid surface and the container
wall (Neu & Good 1963).

(ii) The liquid surface displacement at the wall can be made tangential to the container
wall. Namely, the surface displacement does not penetrate nor detach from the container
wall, so the compatibility condition required for the surface displacement at the container
wall can be satisfied. Note that only one component of the surface displacement vector
needs to be considered for satisfaction of the compatibility condition.

(iii) An analytical method can be applied to derive the characteristic function for an
arbitrary axisymmetrical container, as explained in detail in Section 3.1.

As shown in Figure 1, the position of the origin O of the spherical coordinate system
introduced here depends on the liquid-filling level z

c
. The origin is above the container for

z
c
'b (Case 1) and below otherwise (Case 2). The maximum angle h1 is given by

h1"tan~1(r
c
Dz

c
!h D), (4)
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where h is the z-coordinate of the origin O, which is determined by the container geometry.
The relation between (r, z) and (R, h) is

r"R sin h, z"h!eR cos h, (5)

where e is defined as

e"1 (for z
c
'b), e"!1 (for z

c
(b) (6)

which is convenient for simultaneous mathematical description of Cases 1 and 2 (Figure 1).

2.3. THE VARIATIONAL PRINCIPLE

For the present problem, the variational principle can be written in the form

d P
t2

t1
G PPP

V

(p
l
!p

g
) d»!PP

F

p dFH dt"0, (7)

where the Lagrangian within braces can be derived as follows. When neglecting surface
tension and gas pressure, the Lagrangian density equals the liquid pressure (Seliger
& Whitham 1968), so that the Lagrangian becomes equal to :::

V
p
l
d». From this we must

subtract the potential energy due to the gas pressure p
g
» and that due to the surface tension

::
F
p dF in order to estimate the Lagrangian for the case under consideration here. The gas

pressure is assumed to be constant, since the gas density is much smaller than the liquid
density.

From the pressure equation for unsteady flow, p
l
can be expressed in terms of the velocity

potential U,

p
l
"p

0
!o

fG
­U

­t
#g(z!z

0
)#

1

2
($U)2#GQ

0
(t)H , (8)

where G
0
(t) is an arbitrary time-dependent function.

Equation (8) is written in space-fixed coordinates X, ½ and Z. It may be rewritten in
tank-fixed coordinates x, y and z by using the relations

x"X!f (t), y"½, z"Z. (9)

Hence, we have

­U(X,½,Z, t)

­t
"

­U(x, y, z, t)

Lt
!

­U

­x
fQ (t). (10)

Let us introduce a new velocity potential / by subtracting the velocity potential of the
container x fQ (t) from U i.e.,

/"U!x fQ (t). (11)

The potential describes the liquid motion relative to the moving container. Expressing U in
terms of / and using equation (5), one can transform equation (8) to

p
l
"p

0
!o

f G
­/

­t
#ge (R

M
(0)!R cos h)#R sin h cosu f ® (t)#1

2
($/)2#GQ (t)H. (12)
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Substituting equation (12) into equation (7) and applying the variation to each term leads to

P
t2

t1
GPPP

V

dp
l
d»#PPP

V

(p
l
!p

g
) d (d»)!PP

F

pd (dF)H dt

"P
t2

t1
C(!o

f
) PPP

V
GdA

­/

­tB#$/ ) d ($/)#dGQ Hd»

#PPP
V

(p
l
!p

g
) d (d»)!PP

F

pd (dF)Ddt"0. (13)

It should be noted that the variation must be considered with respect to volume element d»
and surface element dF as well as with respect to the liquid pressure p

l
. For further

transformation of equation (13), variation and differentiation may be transposed and the
following relations hold:

PPP
V

­ (d/)

­t
d»"

­

Lt PPP
V

d/d»#PP
F

­f
­t

cosc
F
d/dF, (14)

PPP
V

­ (dG)

­t
d»"

­
Lt PPP

V

dGd»#PP
F

­f
­t

cosc
F
dGdF, (15)

PPP
V

$/ )$(d/) d»"!PP
F

$/ )N
F
d/dF#PP

W

$/ )N
W

d/d¼!PPP
V

$2/ d/ d»,

(16)

d(d»)"d(d»)"!df cos c
F
dF, (17)

d(dF)"divN
F
df cos c

F
dF . (18)

Equations (14) and (15) arise from the fact that the time derivative of an integral over
a time-varying domain (the first term on the right-hand side of each equation) is equal to the
sum of an integral of the time derivative of the integrand over the instantaneous domain (the
left-hand side of each equation) and an integral of the outward flux of the integrand over the
moving boundary surface. Equation (16) can be derived by use of Green’s theorem.
Equation (17) can be understood from the fact that the variation of the liquid domain is due
to the virtual liquid surface displacement in the direction normal to the liquid surface. The
derivation of equation (18) is explained in Appendix A.

Substituting equations (14)— (18) into equation (13) and noting that d/"df"0 at the
time integration limits t"t

1
and t

2
, one obtains

P
t2

t1
CofGPPP

V

$2/d/d»!PP
W

$/ )N
W

d/d¼!dG PP
F

­f
­t

cos c
F
dF

!PP
F
A
­f
­t

cos c
F
!$/ )N

FBd/dFH#PP
F

(p
g
!p

l
!p divN

F
) cos c

F
dfdFDdt"0. (19)

Since the variations d/, df and dG are arbitrary and independent of one another, equation
(19) yields the following equations:

»: + 2/"0, (20)

¼: $/ · N
W
"0, (21)
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F: G
p
g
!p

l
"p divN

F
,

(­f/­t) cos c
F
"$/ · N

F
,

(22)

(23)

PP
F

(­f/­t) cos c
F
dF"0. (24)

The Laplace equation (20) corresponds to the condition of continuity within the liquid
domain. Equation (21) means that the liquid velocity in the direction normal to the rigid
wall vanishes. Equations (22) and (23) present the dynamic and kinematic boundary
conditions on the liquid surface, respectively. Equation (24) shows that the liquid volume is
constant since the liquid is assumed to be incompressible. Since equation (24) can be derived
from the other kinematic conditions (20), (21) and (23), equations (20)—(23) constitute the
system of basic equations which governs low-gravity sloshing. In the following analysis
using the Galerkin method, the combined and integrated form [equations (19)] is more
convenient than the separated form [equations (20)— (24)].

We should note that the variational principle does not include the contact line condition
which requires that the contact angle between liquid surface and container wall remains
constant during sloshing. Hence, we must determine the admissible function for the liquid
surface displacement by considering the contact line condition geometrically [equation (56)
and Appendix C].

2.4. THE VARIATIONAL PRINCIPLE IN SPHERICAL COORDINATES

To solve the sloshing problem for an axisymmetrical container, it appears most convenient
to express equation (19) in terms of the spherical coordinate system introduced in Sec-
tion 2.2. The unit normal vectors, the surface elements and cos c

F
can be expressed as

functions of R
F
(h, u, t) and R

W
(h) and their h- and u-derivatives:

N
F
"e(e

R
R

F
sin h!ehRFh sin h!euR

Fu)/M(R2
F
#R2

Fh) sin2h#R2
FuN1@2 , (25)

N
W
"e (e

R
R

W
!ehRWh)/(R2

W
#R2

Wh)1@2, (26)

dF"R
F
M(R2

F
#R2

Fh) sin2 h#R2
FuN1@2dhdu, (27)

d¼"R
W

(R2
W
#R2

Wh)1@2 sin hdhdu, (28)

cos c
F
"N

F
· e

R
"eR

F
sin h/M(R2

F
#R2

Fh) sin2h#R2
FuN1@2 . (29)

Equations (25) and (26) can be derived from equations (2) and (3) by using the theorem
that the normal vector of a surface expressed in the form f (R, h, u, t)"0 is given by
grad f. Equation (27) can be obtained by determining the position vectors of the
surface F,

X
F
(h, u, t)"R

F
(h, u, t) (i sin h cosu#j sin h sinu#k cos h), (30)

and estimating the area of the parallelogram formed by the infinitesimal tangential vectors
along the h- and u-direction by

dF"D­X
F
/­h3­X

F
/­u Ddhdu. (31)
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Substituting equations (25)—(29) into equation (19) and using the linear approximation, one
obtains

o
f P

2n

0
P

hM

0

eP
RW

RM

+ 2/d/R2 sin hdRdhdu

!o
f P

2n

0
P

h1

0

eA
­/

­R K
R/RW

!

R
Wh

R2
W

­/

­h K
R/RW

B d/K
R/RW

R2
W

sin h dhdu

!o
f P

2n

0
P

h1

0

eA
­f
­t

!

­/

­R K
R/RM

#

R
Mh

R2
M

­/

­h K
R/RM

B d/K
R/RM

R2
M

sin h dhdu

#P
2n

0
P

h1

0
Ce(pg

!p
0
)#o

f
g MR

M
(0)!R

M
cos hN!pS

0M
(h)

#eo
f

­/

­t K
R/RM

!o
f
gf cos h#eo

f
f ® (t)R

M
sin h cosu

!pGS1M
(h)f#S

2M
(h)

­f
­h

#S
3M

(h)
­2f
­h2

#S
4M

(h)
­2f
­u2HD dfR2

M
sin hdhdu"0, (32)

where

S
0M

(h)"R~1
M

(R2
M
#R2

Mh)~3@2

]M2R3
M
#3R

M
R2

Mh!R2
M

R
Mhh!R

Mh (R2
M
#R2

Mh) cot hN,

S
1M

(h)"R~2
M

(R2
M
#R2

Mh)~5@2

]M!2R5
M
!5R3

M
R2

Mh#2R4
M

R
Mhh!R2

M
R2

MhRMhh
#R

Mh (2R4
M
#3R2

M
R2

Mh#R4
Mh) cot hN,

S
2M

(h)"R~1
M

(R2
M
#R2

Mh)~5@2 (33)

]M3R
M

R
Mh(RM

R
Mhh!R2

Mh)!R2
M

(R2
M
#R2

Mh) cot hN,

S
3M

(h)"!R
M

(R2
M
#R2

Mh)~3@2,

S
4M

(h)"!(sin h)~2R~1
M

(R2
M
#R2

Mh)~1@2.

In the subsequent analysis, equation (32) is used as the basic equation for determining the
eigenfrequency and estimating the liquid surface displacement and the slosh force and
moment.

2.5. SLOSH FORCE AND MOMENT

The slosh force and moment are calculated by integrating the appropriate components of
the liquid pressure, equation (12), and the surface tension over the wetted surface of the
container wall and the contact line, respectively, i.e.

F "F #F #F , M "M #M #M , (34)

x x1 x2 x3 y y1 y2 y3
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where

F
x1
"PP

W

P
D
(N

W
·i) d¼,

(35)

M
y1
"PP

W

P
D
M(N

W
· i) z!(N

W
·k)xNd¼;

F
x2
"eP

C

(p
g
!p

c
)f (N

W
· i)dC,

(36)

M
y2
"eP

C

(p
g
!p

c
)fM(Nw· i)z!(N

W
· k)xNdC;

F
x3
"pP

C

(t
F
· i) dC,

(37)

M
y3
"pP

C

M(t
F
· i )z!(t

F
· k)xN dC.

The slosh moment is about the tank bottom (z"0). Note that three kinds of force and
moment, equations (35)—(37), arise as indicated by equation (34). First, equation (35) gives
the force and moment due to the linearized dynamic liquid pressure which is written from
equation (12) as

P
D
"!o

f
M­//­t#R sin h cosu f ® (t)N. (38)

Second, equation (36) indicates the force and moment exerted along the contact line
C caused by the pressure difference across the liquid—gas interface. These are created from
the fact that when the wetted region is increased due to the liquid surface displacement, the
areas exposed to p

g
and p

l
decrease and increase, respectively, and p

g
is larger than p

l
at the

interface. Third, equation (37) represents the force and moment caused by the unbalanced
pull of the surface tension p at the moving contact line C, i.e. t

F
is the unit vector

perpendicular to the contact line C and parallel to the oscillating liquid surface F:

t
F
"MN

F
3(N

F
3N

W
)N / DN

F
3(N

F
3N

W
) D. (39)

2.6. DIMENSIONLESS PARAMETERS

For convenience in the subsequent analysis and numerical calculation, dimensionless
quantities are introduced here. Letting b* be the characteristic length and defining the
characteristic frequency by

u*
g
"Jg*/b*, (40)

the following dimensionless quantities can be introduced:

/"/*/(b*)2u*
g
, f"f*/b*,

MR,R
M

(h), R
W
(h)N"(R*,R*

M
(h), R*

W
(h)N/b*, t"u*

g
t*, f ® (t)"f ®* (t*)/b*(u*

g
)2,

MS
1M

, S
2M

, S
3M

, S
4M

N"(b*)2MS*
1M

, S*
2M

, S*
3M

, S*
4M

N,

P
D
"P*

D
/o*

f
(b*)2(u*

g
)2, MdF, d¼N"MdF*, d¼*N/(b*)2, (41)
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F
x
"F*

x
/o*

f
(b*)4(u*

g
)2, M

y
"M*

y
/o*

f
(b*)5(u*

g
)2 , (42)

u"u*/u*
g

, (43)

Bo"o*
f
g* (b*)2/p*. (44)

Note that dimensional quantities are distinguished from the corresponding nondimen-
sional ones by adding an asterisk; i.e. an asterisk should be added to all dimensional
quantities, which have been used hitherto. Equation (44) defines the Bond number
Bo, which is the dimensionless parameter relating the magnitude of gravity to surface
tension.

3. DETERMINATION OF MODAL FUNCTIONS

As a preliminary step to the forced vibration analysis, the modal functions for / and f are
determined by a free vibration analysis, where the excitation f ® (t) is omitted in the varia-
tional principle (32). The frequency equation is derived in the form of a standard eigenvalue
problem by analytical procedures.

3.1. SOLUTION OF THE LAPLACE EQUATION IN SPHERICAL COORDINATES

In spherical coordinates, the Laplace equation (20) becomes

+2/,

­2/
­R2

#

2

R

­/
­R

#

1

R2

­2/
­h2

#

cot h
R2

­/
­h

#

1

R2 sin2 h
­2/
­u2

"0. (45)

The solution of equation (45) must be expressed by a linear combination of characteristic
functions whose orthogonality is satisfied within the range 06h6h1 . Since h1(n/2 (see
Figure 1), such orthogonality cannot be satisfied by the associated Legendre functions. This
is the reason why the characteristic functions must be derived anew here. We assume
a solution in terms of separated variables, i.e.

/ (R, h, u, t)"X(R)H(h) cosmue*ut. (46)

Substitution of equation (46) into equation (45) gives

R2
d2X

dR2
#2R

dX

dR
!jX"0, (47)

d2H

dh2
#cot h

dH

dh
!

m2

sin2 h
H#jH"0, (48)

where j denotes the characteristic value to be determined later. Substituting X"Ra into
equation (47), one obtains

a (a#1)!j"0. (49)

On the other hand, equation (48) is solved for the boundary condition

dH

dh Kh"h1
"0. (50)
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This can be derived by considering the limit hPh1 of the boundary condition on the
container wall given by

A
­/

­R
!

R
Wh

R2
W

­/

­hBR"R
W

(h)

"0, 06h6h1 , (51)

which can be found from the second term of the variational principle (32). Let us consider
the derivation of equation (50) from equation (51) in more detail. Equation (51) can be
rewritten as

A
1

R
Wh

­/

­R
!

1

R2
W

­/

­hBR"R
W

(h)

"0. (52)

When h approaches h1 , DR
Wh D tends towards R (see Figure 1), so that the first term of

equation (52) becomes negligible. The remaining second term tends towards the boundary
condition (50), as can be seen from equation (46). Thus, the boundary condition for the
characteristic function H(h) can be determined by the kinematic condition at the contact
line h"h1 , i.e. only (50), instead of throughout the container wall, i.e. (51). Therefore,
irrespective of the generatrix shape of the container, the characteristic function H(h) can be
analytically determined by solving the boundary value problem constituted by equations
(48) and (50). The kth characteristic function is given by

H
k
(h)"(1!m2 )m@2F(m!a, a#m#1, m#1, (1!m)/2)

"(1!m2)m@2
=
+
i/0

]
(m!a) (m!a#1)2(m!a#i!1) (a#m#1) (a#m#2)2(a#m#i)

1)22i](m#1) (m#2)2(m#i)

]M(1!m)/2Ni; m"cos h. (53)

Regarding the derivation of equation (53), refer to Appendix B.
Expressing H

k
(h) in terms of the Gauss hypergeometric series is helpful for examining the

convergence of the series solution. The Gauss hypergeometric series F (a, b, c, x) converges
for arbitrary values of a, b and c, provided that DxD(1. Hence, solution (53) converges for
06h(n. In the present analysis, we have 06h6h1 , where h1 cannot be larger than n/2 as
can be seen from Figure 1. Therefore, convergence of solution (53) is assured.

The characteristic exponent a of the R-dependent function X(R) is determined from
equation (49) as

a
1k
"(!1!J1#4j

k
)/2, a

2k
"(!1#J1#4j

k
)/2 . (54)

By linear combination of the characteristic functions, the velocity potential and the liquid
surface displacement can be expressed as

/ (R, h, u, t)"iu
=
+
k/1
GakA

R

l
a
B

a
1k

#b
kA

R

l
b
B

a
2k

HH
k
(h) cos mue*ut, (55)

f(h,u, t)"
=
+
k/1

c
k
H

k
(h) cosmue*ut, (56)



LOW-GRAVITY PROPELLANT SLOSH ANALYSIS 67
where a
k
, b

k
and c

k
are arbitrary real constants and l

a
and l

b
are normalization parameters

introduced for improving the convergence of series (55). Namely, with the increase of k,
j
k
PR, i.e. a

1k
P!R and a

2k
PR [see equation (54)], so that l

a
and l

b
are, respectively,

the minimum and maximum of R considered, which is R
M

(h) and R
W

(h) (06h6h1 ).
Equation (56) is obtained by imposing

(­f/­h)h"h1"0 (57)

as a dynamical contact line condition. This is an approximate method, but it introduces
a small error even for a small static contact angle h

c
, by virtue of the special way the

spherical coordinates are used in the present study. More detailed discussion on this
approximation is given in Appendix C.

3.2. FREQUENCY EQUATION

To obtain the frequency equation, we substitute equations (55) and (56) into equation (32)
and neglect the excitation term. Using the Galerkin method, considering variations with
respect to a

k
, b

k
and c

k
, and truncating the summation in equations (55) and (56) at k1 , yields

the following system of algebraic homogeneous equations:

A!u2

M
aa

M
ab

M
ac

M
ba

M
bb

M
bc

M
ca

M
cb

0

#

0 0 0

0 0 0

0 0 K
cc

B G
a

b

c H"M0N , (58)

where a, b and c are column vectors defined by

a"Ma
1
, a

2
,2 , ak1 )T, b"Mb

1
, b

2
,2 , bk1 NT, c"Mc

1
, c

2
,2 , ck1 NT, (59)

and M
aa
, etc., are k1 ]k1 matrices whose components are presented in Appendix D.

For reducing the dimension of the eigenvalue problem from 3k1 [equation (58)] to k1 ,
express a and b in terms of c as

MaN"![M@
aa

M
ac
#M@

ab
M

bc
] McN, MbN"![M@

ba
M

ac
#M@

bb
M

bc
] McN , (60)

where M@
aa
, M@

ab
, M@

ba
and M@

bb
are k1 ]k1 matrices defined by

C
M@

aa
M@

ba

M@
ab

M@
bb
D"C

M
aa

M
ba

M
ab

M
bb
D
~1

. (61)

Substitution of equation (60) into (58) yields the following standard eigenvalue problem
with dimension k1 :

[!u2M#K] McN"M0N, (62)

where

M"!M
ca

(M@
aa
M

ac
#M@

ab
M

bc
)!M

cb
(M@

ba
M

ac
#M@

bb
M

bc
), K"K

cc
. (63)

From equation (62), u can be determined as a solution of

D!u2M#K D"0. (64)

The eigenvector c determined by equation (62) yields the eigenmodes of the liquid surface
displacement f [equation (56)], while a and b calculated by equation (60) yield eigenmodes
of the velocity potential / [equation (55)].
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The dimension k1 of the eigenvalue problem (62) for obtaining a sufficiently converged
solution is small due to the orthogonality of the characteristic functions (53), so that the
present analysis requires only a small amount of computation time and cost. The analytical
derivation of the characteristic functions H

k
and the rapid convergence of their constituting

series [equation (53)] are helpful for fast computation.

4. RESPONSE TO LATERAL EXCITATION

The purpose of this section is to perform a forced vibration analysis using the modal
functions determined in Section 3. First, the modal equation is derived by applying the
Galerkin method to the variational principle (32) presented in this paper. Then, the liquid
surface displacement and the slosh force and moment are determined by solving the modal
equation.

4.1. MODAL EQUATION

Since a lateral excitation causes only the mode with circumferential wave number m"1, we
may express / and f in terms of their modal functions (55) and (56) with m"1, i.e.

/"qR (t)
=
+
k/1
GakA

R

l
a
B
a1k

#b
kA

R

l
b
B
a2k

HH
k
(h) cosu , (65)

f"q(t)
=
+
k/1

c
k
H

k
(h) cosu, (66)

where only the fundamental mode is considered, since this mode is of greatest importance in
the resonant and critical case. The modal coordinate for the fundamental mode is denoted
by q (t). Substituting equations (65) and (66) into the variational principle (32) and consider-
ing the variation with respect to q(t) leads to the following modal equation:

Mq̈#Kq"bf ® (t), (67)

where M, K and b are given in Appendix E. Equation (67) can be written as

q̈#u2q"b
1

f ® (t); u2"K/M, b
1
"b/M. (68)

4.2. SLOSH FORCE AND MOMENT

One can express the slosh force and moment in terms of the modal coordinates q(t) by
substituting equations (65) and (66) into equation (34). In dimensionless form (Section 2.6)
we finally obtain

F
x
"A

1
q̈ (t)#A

2
f ® (t)#A

3
q(t), M

y
"A

4
q̈(t)#A

5
f ® (t)#A

6
q(t). (69)

Constants A
1
—A

6
are not presented here for brevity.

5. NUMERICAL RESULTS

5.1. MENISCUS SHAPE AND EIGENFREQUENCY

Figure 2 shows the meniscus shape for a spherical container and a contact angle of 5°
between meniscus and container wall also shown in a previous paper (Utsumi 1988). It is



Figure 2. Shape of meniscus for various Bond numbers and dimensionless z-coordinates of contact line.
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presented again in order to facilitate the discussion of the numerical results for eigen-
frequency and displacement of the liquid surface given below. It can be seen that, when the
Bond number Bo is large, the menisci are almost flat except in the vicinity of the container
wall. With decreasing Bond number, the menisci tend more and more to exhibit spherical
shapes. For the case Bo"0, which corresponds to a zero-gravity environment, the menisci
are exactly spherical (Utsumi 1989, Appendix D).

Figure 3 shows the dimensionless eigenfrequency u [equation (43)] of the fundamental
mode m"1 for a spherical container. A considerable difference is found between the
u versus Bo relations for large z

c
(1)5(z

c
) and small z

c
(z

c
(0)3). Namely, for 1)5(z

C
,

u decreases drastically with decreasing Bo within the range 10(Bo, whereas for z
c
(0)3,

u increases remarkably with the reduction of Bo within Bo(10. These results can be
explained physically as follows. The volume-to-area ratio becomes large for 1)5(z

c
, so that

the sloshing exhibits properties of a gravity wave rather than those of a surface tension wave
for a fairly wide range of Bo. The natural frequency of the gravity wave increases with
increasing liquid depth. A lower centre of the meniscus with smaller Bo (Figure 2) means
a shallower liquid depth. Hence, u decreases with decreasing Bo for 1)5(z

c
. On the other

hand, for small z
c
(z

c
(0)3), the sloshing exhibits properties of a surface tension wave. The

potential energy due to surface tension is much larger than that due to gravity. Further-
more, it is to be noted that u is nondimensionalized by the gravity [see equation (43)
together with equation (40)], so that u becomes large for small Bo. Assuming that z

c
&O (e)

for the case of z
c
P0, the liquid surface area decreases, according to the surface tension

potential, as O (e2); this is a slower rate of decrease than the liquid volume, which according



Figure 3. Dimensionless eigenfrequency u"u*/Jg*/b* ; u* is the dimensional eigenfrequency, g* the gravi-
tational acceleration, and b* the half-height of the container.
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to the gravity potential, is O (e3). This is the reason why the surface tension effect prevails
rather than the gravity effect for z

c
P0, and u increases drastically with z

c
P0 and BoP0.

In order to verify the discussion, it is useful to define another dimensionless eigenfrequency
normalized by a quantity independent of g*. Figure 4 shows the dimensionless eigen-
frequency u6 defined by

u6 "u*/u*p , (70)

where

u*p"Jp*/(o*
f

b*3) . (71)



Figure 4. Alternative dimensionless eigenfrequency u6 "u*/Jp*/o*
f
(b*)3 ; u* is the dimensional eigen-

frequency, p* the surface tension, o*
f

the liquid density, and b* the half-height of the container.
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The value of u6 can be calculated from the formerly defined dimensionless eigenfrequency
u given by equation (43); i.e.

u6 "uJBo . (72)

It can be seen that for small z
c
the u6 versus Bo relationship is different from that of u versus

Bo, i.e. u6 does not increase with decreasing Bond number.
Figure 5 compares eigenfrequencies obtained by the present analysis with experimental

results (Dodge & Garza 1970). Good agreement is obtained.

5.2. RESPONSE TO LATERAL EXCITATION

Figure 6 shows the amplitude of the stationary response of the dimensionless liquid surface
displacement f at the container wall (h,u)"(h1 , 0) and the lateral slosh force F

x
and moment



Figure 5. Dimensional eigenfrequency u versus the Bond number Bo: ——, present analysis; d, experiment by
Dodge & Garza (1970). Liquid volume/container volume is 0)85.
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M
y

for a spherical container subjected to sinusoidal lateral acceleration of amplitude
0)0125g* and angular frequency 0)95 u*. This is a critical case where the excitation
frequency is near the eigenfrequency u* of the fundamental mode. The modal damping is
assumed to be 0)01.

First, it can be seen from Figure 6 (a) that the influence of Bo on the amplitude of the
dimensionless liquid surface displacement f changes for liquid-filling levels larger than, say,
z
c
"1. Namely, we find that (i) for small z

c
(approximately 0(z

c
(1), f increases with

increasing Bo, and that (ii) for large z
c
(approximately 1(z

c
(2), f becomes maximal for

a certain finite value of Bo.
Result (ii) signifies that the analysis for BoPR, which does not take into consideration

the surface tension effect at all, underestimates the liquid surface oscillation for 1(z
c
(2.

Such an underestimation is serious for a liquid-filling level close to 2. In addition, for z
c
P2

the range of Bo that makes f larger than f for BoPR becomes wider as shown by the
dashed line in Figure 6 (a). We attribute the reason to the remarkable increase of u~2

(Figure 3) and the absolute value of the factor

b
k
"P

h1

0

R3
M

sin2 hH
k
dh (73)

with the decrease of Bo from infinity. The factor appears in the excitation parameter
b [equation (E3) in Appendix E] of the modal equation (67) and becomes much larger in
magnitude for a finite Bond number than an infinite one for the following reason. In
equation (73), R

M
is the distance between an arbitrary point on the meniscus and the origin,

i.e. the top of the cone tangential to the container at the contact line z"z
c

(Figure 1).
Therefore, as can be seen from Figure 2, R

M
is much larger for finite Bond number than for

infinite Bond number, for which the meniscus is the plane z"z
c
. It should be noted here

that the large difference in R
M

for finite and infinite Bond numbers is due to the very small
contact angle between the meniscus and the container wall (Neu & Good 1963) and the
large tilt of the container wall from the vertical direction (i.e. parallel to the z-axis) near



Figure 6. Amplitude of stationary response to sinusoidal lateral excitation in the x-direction of amplitude
0)0125 g* and angular frequency 0)95u* (modal damping ratio is 0)01): (a) dimensionless liquid surface displace-
ment f at the container wall; (b) dimensionless slosh force F

x
exerted to the container; (c) dimensionless slosh

moment M
y

exerted to the container.
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z"2. This difference is accentuated by the fact that R
M

is raised to the third power in
equation (73).

The responses of dimensionless slosh force F
x
and moment M

y
are shown in Figures 6(b)

and 6(c), respectively. First, let us consider the physical meanings of the results for BoPR

and Bo"100, where F
x1

and M
y1

in equation (34) prevail over the other terms. In this case,
note that F

x
and M

y
are close to each other since the relation

F
x1
"M

y1
(74)

holds for a spherical container. This is because both the force and moment acting on the
surface element of the container wall are equal to dF

x1
"dM

y1
"P

D
sint cosu d¼, where

t denotes the angle between the normal of ¼ and the z-axis at the position (h,u) and the
container radius can be considered as unity since it has been used for nondimensionaliz-
ation [equation (42)]. The magnitude of the dynamic pressure P

D
along the container wall is

maximal at the liquid surface (z"z
c
). Hence, the resultant slosh force and moment are

determined mainly by the pressure near the liquid surface. The pressure is exerted on the
container wall in its normal direction and both the x-component of N

W
and the distance

between N
W

and the moment centre (y-axis) at the position (z, u)"(z
c
, 0) are maximal at

z
c
"1, i.e. just at the mid-filling level. Therefore, F

x
and M

y
do not necessarily increase

monotonically with the filling level z
c
but exhibit a maximum at a certain intermediate value

of z
c
. The value of z

c
giving the maximum of F

x
and M

y
becomes somewhat higher than

z
c
"1 due to the following two factors: (a) increasing z

c
extends the wetted region of the

container wall subjected to the liquid pressure; (b) with increasing z
c
, the liquid surface

displacement increases [Figure 6 (a)] except for very large Bond number. Due to the second
factor, the z

c
giving the maximum slosh force and moment is larger for Bo"100 than for

BoPR.
For smaller Bond numbers (Bo"10 and 1), F

x2
, M

y2
, F

x3
, and M

y3
in equation (34)

become important. Due to F
x3

and M
y3

, the relation F
x
"M

y
no longer holds and the

z
c
yielding the maximum F

x
and M

y
shifts to higher values with decreasing Bo, since the

second influence mentioned above becomes important.
Figure 7 shows the dimensionless slosh force and moment alternatively defined as

FM
x
"F*

x
/o*

f
(b*)4(u*p )2, MM

y
"M*

y
/o*

f
(b*)5(u*p )2, (75)

which can be calculated from the formerly defined dimensionless slosh force and moment by
[cf. equation (42)]

FM
x
"F

x
Bo, MM

y
"M

y
Bo. (76)

5.3. CONVERGENCE OF NUMERICAL RESULTS

Examples for the convergence of the numerical results with increasing dimension k1 for the
eigenvalue problem (62) are shown in Tables 1—3, which are, respectively, for the eigen-
frequency, liquid surface displacement and slosh force. The percentage figures express the
ratio of the result for arbitrary k1 and k1 "10, which is supposed here to be close to the exact
solution. The convergence becomes slower for smaller Bond numbers and lower liquid-
filling levels, for which the meniscus is thin (Figure 2) and the ratio between the liquid and
container volumes very small (e.g. 5)9% for Bo"10 and z

c
"0)5). In such a case, the slosh



Figure 7. Amplitude of alternative dimensionless slosh force and moment.
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force and moment are no longer an important factor for vehicle control (Figure 6) and are
negligible for engineering purposes. The computation time is only 10 s for k1 "10 and
decrease with k1 2. Thus, the present analytical method requires a small amount of computa-
tion time and cost.



TABLE 1
Convergence of numerical result for eigenfrequency with increasing dimen-

sion of eigenvalue problem; all entries in the table are in percent (%)

(a) Bo"1 (b) Bo"10

k1 z
c
"0)5 z

c
"1)1 z

c
"1)7 k1 z

c
"0)5 z

c
"1)1 z

c
"1)7

1 123)7 109)8 108)6 1 106)9 101)9 101)9
2 108)3 102)5 101)2 2 102)5 100)9 100)8
3 104)9 101)5 100)6 3 101)4 100)5 100)3
4 103)1 101)0 100)4 4 100)9 100)3 100)2
5 102)1 100)7 100)3 5 100)6 100)2 100)1
6 101)4 100)5 100)2 6 100)4 100)1 100)1
7 100)9 100)3 100)1 7 100)2 100)1 100)1
8 100)5 100)2 100)1 8 100)1 100)1 100)0
9 100)3 100)1 100)0 9 100)1 100)0 100.0

10 100)0 100)0 100)0 10 100)0 100)0 100)0

(c) Bo"100 (d) BoPR

1 101)8 100)7 104)1 1 101)3 100)4 104)4
2 100)6 100)3 101)2 2 100)4 100)2 101)7
3 100)3 100)2 100)4 3 100)2 100)1 100)9
4 100)2 100)1 100)2 4 100)1 100)1 100)5
5 100)1 100)1 100)1 5 100)1 100)1 100)3
6 100)1 100)1 100)1 6 100)1 100)0 100)2
7 100)1 100)1 100)1 7 100)0 100)0 100)1
8 100)0 100)0 100)0 8 100)0 100)0 100)1
9 100)0 100)0 100)0 9 100)0 100)0 100)0

10 100.0 100)0 100)0 10 100)0 100)0 100)0
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6. CONCLUSIONS

The response of the low-gravity propellant sloshing has been analysed for the case where an
axisymmetrical container is exposed to lateral excitation. The results can be summarized as
follows.

(a) Using the spherical coordinate system with its origin at the top of the cone tangential
to the container at the contact line of the meniscus with the container wall enables us (i) to
analytically derive the characteristic functions for an arbitrary axisymmetrical convex
container, (ii) to express the liquid surface and its dynamical displacement as a single-valued
function and (iii) to satisfy the compatibility condition for the liquid surface displacement at
the container wall.

(b) A variational principle taking into account the surface tension as well as the resulting
pressure difference on the liquid—gas interface has been introduced.

(c) As a preliminary step to the response analysis, eigenfrequencies and modal functions
have been determined. The variational principle has been transformed to a frequency
equation by the Galerkin method, constituting a standard eigenvalue problem. The charac-
teristic functions have been expressed analytically in terms of the Gauss hypergeometric
series for an arbitrary axisymmetrical container rather than by conventional numerical
methods. Since the characteristic functions are determined analytically and the dimension



TABLE 2
Convergence of numerical result for liquid surface displacement with in-
creasing dimension of eigenvalue problem; all entries in the table are in

percent (%)

(a) Bo"1 (b) Bo"10

k1 z
c
"0)5 z

c
"1)1 z

c
"1)7 k1 z

c
"0)5 z

c
"1)1 z

c
"1)7

1 54)8 77)1 92)5 1 73)5 88)9 92)6
2 69)6 85)9 96)3 2 83)3 93)2 97)6
3 78)1 90)2 97)6 3 88)5 95)5 98)7
4 84)0 93)0 98)4 4 91)7 96)9 99)3
5 88)3 94)9 98)9 5 94)0 97)7 99)5
6 91)6 96)4 99)2 6 95)7 98)4 99)7
7 94)3 97)6 99)5 7 97)1 98)9 99)8
8 96)5 98)5 99)7 8 98)2 99)3 99)9
9 98)4 99)3 99)9 9 99)2 99)7 100)0

10 100)0 100)0 100)0 10 100)0 100)0 100)0

(c) Bo"100 (d) BoPR

1 83)1 92)3 82)8 1 83)9 99)7 106)2
2 90)8 96)1 93)2 2 91)9 100)1 100)7
3 94)1 97)6 97)3 3 95)2 100)1 99)7
4 96)0 98)3 98)9 4 96)9 100)1 99)4
5 97)2 98)8 99)5 5 98)0 100)1 99)3
6 98)0 99)2 99)7 6 98)6 100)1 99)3
7 98)7 99)5 99)8 7 99)1 100)1 99)4
8 99)2 99)7 99)9 8 99)5 100)0 99)6
9 99)6 99)9 100)0 9 99)8 100)0 99)8

10 100)0 100)0 100)0 10 100)0 100)0 100)0
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of the eigenvalue problem for obtaining sufficiently converged results is low, the present
method requires only a small amount of computation time and cost.

(d) For calculating the response to lateral excitation, the variational principle has been
expressed in the form of a modal equation using the modal functions determined in (c).
From the solution of the modal equation, responses of the liquid surface displacement and
the slosh force and moment have been determined.

(e) When the Bond number is decreased, the dimensionless eigenfrequency decreases for
high liquid-filling levels, but it increases for low liquid-filling levels.

(f ) When surface tension is neglected, the analysis underestimates the magnitude of the
liquid surface oscillation.

(g) The liquid-filling level which yields the maximum of slosh force and moment increases
with decreasing Bond number.
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TABLE 3
Convergence of numerical result for slosh force with increasing dimension of

eigenvalue problem; all entries in the table are in percent (%)

(a) Bo"1 (b) Bo"10

k1 z
c
"0)5 z

c
"1)1 z

c
"1)7 k1 z

c
"0)5 z

c
"1)1 z

c
"1)7

1 231)1 186)2 132)8 1 144)3 112)5 105)2
2 170)1 138)2 106)8 2 121)4 106)1 101)1
3 150)5 126)5 104)0 3 114)8 103)6 100)0
4 137)3 119)0 102)6 4 110)8 102)5 100)0
5 127)4 113)7 101)8 5 107)9 101)8 100)0
6 119)6 109)7 101)2 6 105)6 101)3 100)0
7 113)4 106)5 100)8 7 103)8 100)9 100)0
8 108)1 104)0 100)5 8 102)3 100)5 100)0
9 103)7 101)8 100)2 9 101)1 100)2 100)0

10 100)0 100)0 100)0 10 100)0 100)0 100)0

(c) Bo"100 (d) BoPR

1 106)5 97)9 98)1 1 98)6 96)7 96)5
2 102)8 99)6 99)3 2 98)9 98)3 96)6
3 101)6 99)9 99)5 3 99)3 99)0 97)6
4 101)1 99)9 99)6 4 99)5 99)3 98)3
5 100)7 99)9 99)7 5 99)6 99)5 98)8
6 100)5 99)9 99)8 6 99)7 99)7 99)2
7 100)4 99)9 99)9 7 99)8 99)8 99)5
8 100)2 100)0 99)9 8 99)9 99)9 99)7
9 100)1 100)0 100)0 9 100)0 99)9 99)9

10 100)0 100)0 100)0 10 100)0 100)0 100)0
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APPENDIX A: DERIVATION OF EQUATION (18)

Equation (18) can be proved by expressing divN
F

as the limit of a surface integral, i.e.

div N
F
" lim

DP0 G«
A

N
F
· ndA/DH, (A1)

where D is an arbitrary volume including point P in which the vector N
F

is erected, A is the
closed surface bounding volume D, and n is the outer normal unit vector of surface A. Let
volume D be the domain which the surface element dF penetrates during the virtual
displacement df from dF to dF@"dF#d(dF) (see Figure A1). Then, the inner product
N

F
· n is !1 on dF, 1 on dF@, and 0 on A!dF!dF@ (i.e. on all other portions of A, except

dF and dF@), while D"dF df cos c
F
. So, equation (A1) gives

divN
F
"

dF @!dF

dFdf cos c
F

"

d (dF)

dF df cos c
F

, (A2)

which is identical to equation (18).
Figure A1. Virtual displacement of liquid surface F considered for derivation of equation (18).
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APPENDIX B: DERIVATION OF EQUATION (53)

The new variables

m"cos h, u (m)"(1!m2)~m@2H(h) (B1)

transform equation (48) to a differential equation with regular singular points at m"$1:

d2u

dm2
!

2(m#1)m
1!m2

du

dm
#

j!m(m#1)

1!m2
u"0, (B2)

which can be solved by a power-series expansion method. Substituting

u(m)"(m!1)o
=
+
i/0

a
i
(m!1)i (B3)

into equation (B2), one obtains an equation for o, namely

o (o#m)"0, (B4)

and a recurrence relation for the coefficients a
i
:

a
i`1

"

j!i (i#1)!m (m#1#2i)

2(i#1)(i#1#m)
a
i
. (B5)

Equation (B4) yields o"0, since the solution (B3) must be bounded at m"1 (h"0). The
characteristic values j"j

k
(k"1, 2,2 ) must be determined such that the solution (B3)

satisfies the boundary condition (50). By using equation (49) as well as equation (B1), the
required system of characteristic functions H

k
(h) can be expressed in terms of the Gauss

hypergeometric series as equation (53).

APPENDIX C: DISCUSSION ON THE DYNAMIC CONTACT LINE CONDITION
(EQUATION (57))

Calculating N
F
· N

W
from equations (25) and (26), expressing the result in the form of

a Taylor expansion with respect to the liquid surface displacement and its derivatives, and
considering only its linear component, we have

* cos h
c
"!sin h

c
*h

c
"!e[R

M
(R

M
fh!R

Mh f)/(R2
M
#R2

Mh)3@2Nh/hM , (C1)

where h
c
is the static contact angle, while *h

c
denotes the time variation of the contact angle

due to sloshing. The generatrix of the container wall is considered straight within a small
range in which the contact line moves up and down during small amplitude sloshing. Since

sin h
c
"[R

M
/ (R2

M
#R2

Mh)1@2]h"hM , (C2)

we obtain from equation (C1)

*h
c
"e[(R

M
fh!R

Mhf)/(R2
M
#R2

Mh)]h"hM . (C3)

Using approximation (57) and

(R
Mh/RM

)h"hM"!e/tan h
c
, (C4)

equation (C3) can be written as

*h
c
"!e [R

Mh f/(R2
M
#R2

Mh)]h"hM"0.5 sin (2h
c
) (f/R

M
)h"hM . (C5)
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Hence, the relative error is given by

*h
c
/h

c
"(f/R

M
)h"h1 (C6)

for a small static contact angle h
c
. For small amplitude sloshing in a spherical container, e.g.

fh"h1 "0)1 (10% of the container radius), the relative error is 10% for z
c
"1)71 (R

M
"1,

Figure 1). For z
c
closer to 1, the error is smaller, and for z

c
"1)9 it is still only 20%.

Looking into the derivation of equation (C5), we can find the reason why the relative
error is restricted in spite of the very simple condition (57) and the small h

c
. For h

c
P0 [i.e.

DR
Mh DPR from equation (C4)], the denominator of equation (C5), which contains the

factor R2
Mh , becomes larger than the numerator which goes only with R

Mh . This is nothing
but the result of the special way of defining the spherical coordinate system (Figure 1).
Figure 1 also gives us the following geometrically intuitive comprehension. There is only
a little margin remaining for the rotation of the liquid surface f at the contact line, namely
the small static contact angle h

c
, so that *h

c
is controlled with the reduction of h

c
.

APPENDIX D: MATRIX COMPONENTS OF EQUATION (58)

The (k, l ) components of the matrices in equation (58) are presented by

M
ba

(k, l )"eP
h1

0
CGf @

alA
R

W
l
a
B

H
l

l
a

!

R
Wh

R2
W

f
alA

R
W
l
a
BH@

lH f
bkA

R
W
l
a
BR2

w

!Gf @
alA

R
M

l
a
B

H
l

l
a

!

R
Mh

R2
M

f
alA

R
M
l
a
BH@

lH f
bkA

R
M
l
a
BR2

MDH
k
sin h dh, (D1)

M
ac

(k, l)"e P
hM

0

H
l
R2

M
sin h f

akA
R

M
l
a
BH

k
dh, (D2)

M
bc

(k, l )"e P
hM

0

H
l
R2

M
sin h f

bkA
R

M
l
b
BH

k
dh, (D3)

M
ca
(k, l)"!M

ac
(l, k), (D4)

M
cb
(k, l)"!M

bc
(l, k), (D5)

K
cc
(k, l)"P

hM

0
GHl

cos h#
1

Bo
(S

1M
H

l
#S

2M
H@

l
#S

3M
HA

l
!m2S

4M
H

l
)HR2

M
sin hH

k
dh,

(D6)

where

f
ak

(x)"xa1k, f
bk

(x)"xa2k . (D7)

The matrix components which are not listed can be determined as follows: M
aa

(k, l ) is
determined by replacing suffix b in equation (D1) by a, M

bb
(k, l) is determined by replacing

suffix a in equation (D1) by b and M
ab

(k, l )"M
ba

(l, k).

APPENDIX E: COEFFICIENTS IN MODAL EQUATION (67)

The coefficients in equation (67) are presented by

M"

=
+
k/1

=
+
l/1
P

hM

0

[a
k
a
l
MM

aa
(k, l )#a

k
b
l
MMM

ab
(k, l )#MM

ba
(l, k)N#b

k
b
l
MM

bb
(k, l)
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#a
k
c
l
MMM

ac
(k, l)#MM

ca
(l, k)N#b

k
c
l
MMM

bc
(k, l )#MM

cb
(l, k)N] dh, (E1)

K"

=
+
k/1

=
+
l/1
P

hM

0

c
k
c
l
KM

cc
(k, l ) dh, (E2)

b"!e
=
+
k/1

c
kP

hM

0

R3
M

sin2 hH
k
dh. (E3)

In equations (E1) and (E2), MM
aa

(k, l ), etc. are given by

MM ab(k, l )"e fak (RW
/la)Hk

sin h MR2
W

f @bl (RW
/lb )Hl

/lb!R
Wh fbl(RW

/lb)H@
l
N

!e fak (RM
/la)Hk

sin h MR2
M

f @bl (RM
/lb )Hl

/lb!R
Mh fbl(RM

/lb)H@
l
N,

in which (a,b)"(a, a), (a, b), (b, a), (b, b);

MM
ac

(k, l)"eR2
M

sin h f
ak

(R
M

/l
a
) H

k
H

l
,

MM
bc

(k, l)"eR2
M

sin h f
bk

(R
M

/l
b
) H

k
H

l
,

(E4)
MM

ca
(k, l)"MM

ac
(l, k), MM

cb
(k, l )"MM

bc
(l, k ),

KM
cc
(k, l)"!R2

M
sin hH

k
MH

l
cos h# (S

1M
H

l
#S

2M
H@

l
#S

3M
HA

l
!m2S

4M
H

l
)/BoN ,

where both a and b may stand for a or b in the first equation.

APPENDIX F: NOMENCLATURE

a
k
, b

k
coefficients in modal function for velocity potential

Bo Bond number
b half-height of container (characteristic length, Figure 1)
c
k

coefficients in modal function for liquid surface displacement
e
R
, eh, eu unit vectors in R, h and u directions

F disturbed liquid surface (Figure 1)
F
x

slosh force
f ® (t) lateral acceleration of container
G(t) arbitrary function in pressure equation (12)
g gravitational acceleration
i, j, k unit vectors in x, y and z- directions
k1 number of characteristic functions H

k
taken into account

l
a
, l

b
normalization parameters [equation (55)]

M meniscus (undisturbed liquid surface, Figure 1)
M

y
slosh moment

m circumferential wave number
N

F
unit normal vector of F pointing into liquid domain

N
W

unit normal vector of ¼ pointing outwards from liquid domain
p
0

static liquid pressure at bottom (r"0) of meniscus
p
c

static liquid pressure at contact line
p
g

gas pressure
p
l

liquid pressure
q(t) modal coordinate
R, h, u spherical coordinates (Figure 1)
R

F
(0,u, t) function expressing shape of disturbed liquid surface (Figure 1)
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R
M

(h) function expressing shape of undisturbed liquid surface (Figure 1)
R

W
(h) function expressing shape of container wall (Figure 1)

S
0M

!S
4M

h-dependent functions [equation (33)]
» liquid domain (Figure 1)
¼ container wall (Figure 1)
z
c

z-coordinate of the contact line
z
0

z-coordinate of meniscus bottom (r"0)
a
1k

, a
2k

characteristic exponents [equations (54) and (55)]
c
F

angle between N
F

and R-direction
e 1 and !1, respectively, for Cases 1 and 2 (Figure 1)
f liquid surface displacement (Figure 1)
H

k
characteristic function determined by equations (48) and (50)

hM maximum of h (Figure 1)
h
c

contact angle between meniscus and container wall
j
k

characteristic value determined by equations (48) and (50)
o
f

liquid density
p surface tension (surface free energy per unit area)
U velocity potential
/ velocity potential (relative motion to container)
u

g
characteristic frequency [equation (40)]

Subscripts
k characteristic value and function number
h differentiation with respect to h
u differentiation with respect to u
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